
Compromised Microsoft Key: More Impactful Than We Thought

Our investigation of the security incident disclosed by Microsoft and CISA and attributed to Chinese
threat actor Storm-0558, found that this incident seems to have a broader scope than originally
assumed. Organizations using Microsoft and Azure services should take steps to assess potential impact.

11 minutes read

Shir Tamari
July 21, 2023

Microsoft and CISA recently disclosed a security incident impacting multiple customers of

Exchange Online and Outlook.com. According to Microsoft, this incident stemmed from a

threat actor attributed to China, Storm-0558, acquiring a private encryption key (MSA key)

and using it to forge access tokens for Outlook Web Access (OWA) and Outlook.com.

Additionally, the threat actor reportedly exploited two security issues in Microsoft’s token

veri�cation process.

Want to know how major companies like
DocuSign, Slack, and Salesforce secure their
cloud?

1

Microsoft have said that Outlook.com and Exchange Online were the only applications

known to have been affected via the token forging technique, but Wiz Research has found

that the compromised signing key was more powerful than it may have seemed, and was not

limited to just those two services. Our researchers concluded that the compromised MSA

key could have allowed the threat actor to forge access tokens for multiple types of Azure

Active Directory applications, including every application that supports personal account

authentication, such as SharePoint, Teams, OneDrive, customers’ applications that support

the “login with Microsoft” functionality, and multi-tenant applications in certain conditions.

In addition, while Microsoft mitigated this risk by revoking the impacted encryption key and

publishing attacker IOCs, we discovered that it may be dif�cult for customers to detect the

use of forged tokens against their applications due to lack of logs on crucial �elds related to

the token veri�cation process.

Why is it so impactful? Identity provider’s signing keys are probably the most powerful

secrets in the modern world. For example, they are much more powerful than TLS keys. Even

if an attacker got access to the google.com TLS key, they would still need to somehow

impersonate a google.com server to gain signi�cant impact. With identity provider keys, one

can gain immediate single hop access to everything, any email box, �le service or cloud

account. This isn’t a Microsoft speci�c issue, if a signing key for Google, Facebook, Okta or

any other major identity provider leaks, the implications are hard to comprehend. Our

industry – and especially cloud service providers – must commit to a greater level of

security and transparency concerning how they protect critical keys such as this one, to

prevent future incidents and limit their potential impact.

In this post, we will share how we were able to con�rm which private key was acquired by

the threat actor and how we determined its permissions. We will also unpack some of the

technical aspects of this incident and help detect potential use of this compromised key

within your environments.

Compromised consumer signing key – who are you?

On July 11th, 2023, Microsoft revealed that a malicious actor had obtained an MSA consumer

signing key, allowing them to forge access tokens for Exchange Online and Outlook.com

accounts.

Determined to learn more about the incident, we launched an investigation.

First, we checked which keys could sign OpenID tokens for Microsoft accounts and Azure

Active Directory applications. We therefore examined Microsoft’s of�cial documentation

for OpenID token veri�cation. Interestingly, we discovered that all Azure personal account

v2.0 applications depend on a list of 8 public keys, and all Azure multi-tenant v2.0

applications with Microsoft account enabled depend on a list of 7 public keys (at the time

of writing).

Using the Internet Archive’s Wayback Machine, we noticed that one of the listed public keys

that had been present since at least 2016 was replaced sometime between June 27th and

July 5th, 2023, matching the time frame in which Microsoft replaced the acquired key

according to their blog post.

Metadata of the public key replaced between June 27th and July 5th

The old public key’s certi�cate revealed it was issued on April 5th, 2016, and expired on April

4th, 2021, and its thumbprint matched the thumbprint of the key Microsoft listed in their

latest blog post, named “Thumbprint of acquired signing key”:

{
 "kty":"RSA",
 "use":"sig",
 "kid":"1LTMzakihiRla_8z2BEJVXeWMqo",
 "x5t":"1LTMzakihiRla_8z2BEJVXeWMqo",
 "n":"3sKcJSD4cHwTY5jYm5lNEzqk3wON1CaARO5EoWIQt5u-X-…",
 "e":"AQAB",
 "x5c":[
"MIIDYDCCAkigAwIBAgIJAIB4jVVJ3BeuMA0GCSqGSIb3DQEBCwUA…"
],
 "issuer":"https://login.microsoftonline.com/9188040d-6c67-4c5b-b112-36a304b66dad/v
2.0"
}

The decoded certi�cate of the old key (1LTMzakihiRla_8z2BEJVXeWMqo). Obtained from the list intended June
27th, 2023 version of the certi�cate list for Azure common (mixed audience) applications.

This led us to believe that although the compromised key acquired by Storm-0558 was a

private key designed for Microsoft's MSA tenant in Azure, it was also able to sign OpenID

v2.0 tokens for multiple types of Azure Active Directory applications.

What is the signi�cance of a compromised OpenID signing key?

The Azure identity platform publishes multiple lists of trusted keys scoped to different

application types. These serve to validate the integrity of tokens which are issued by Azure

Active Directory (AAD). During the authentication process for an AAD application, the

application must con�rm the token's authenticity by verifying its signature against the

correct trusted public key list. This veri�cation determines whether the token should be

trusted.

Azure Active Directory multi-tenant applications:

https://login.microsoftonline.com/organizations/discovery/v2.0/keys
Azure Active Directory Multi-Tenant & Personal Account Applications (mixed audienc
e):
https://login.microsoftonline.com/common/discovery/v2.0/keyshttps://login.microsoftonl
ine.com/common/discovery/v2.0/keys
Azure Active Directory Personal Account (MSA) Applications:
https://login.microsoftonline.com/consumers/discovery/v2.0/keyshttps://login.microsoft
online.com/consumers/discovery/v2.0/keys

Azure Active Directory public certi�cates’ lists

If any of the keys from one of these lists are compromised, there is a signi�cant risk for

applications using that list for validation. Such a compromise could enable unauthorized

parties to forge valid access tokens for consumption by any application that depends on the

Azure identity platform under certain conditions (see below).

The risks of compromised OpenID signing key

Based on what we can deduce from Microsoft’s blog post, Storm-0558 seemingly managed

to obtain access to one of several keys that were intended for signing and verifying AAD

access tokens. The compromised key was trusted to sign any OpenID v2.0 access token for

personal accounts and mixed-audience (multi-tenant or personal account) AAD

applications.

https://login.microsoftonline.com/9188040d-6c67-4c5b-b112-36a304b66dad/discovery/v2.0/
keyshttps://login.microsoftonline.com/9188040d-6c67-4c5b-b112-36a304b66dad/discovery/v
2.0/keys
Azure Active Directory Single-Tenant Applications:
https://login.microsoftonline.com/${tenantId}/discovery/v2.0/keys
https://login.microsoftonline.com/${tenantId}/discovery/v2.0/keys?appid=${AppId}

The types of applications that could trust the key acquired by Storm-0558

In other words, Storm-0558 could have theoretically used the private key it acquired to

forge tokens to authenticate as any user to any affected application that trusts Microsoft

OpenID v2.0 mixed audience and personal-accounts certi�cates.

Which applications are affected?

Based on our analysis, only Azure Active Directory applications that work with Microsoft’s

OpenID v2.0 were affected. Version 1.0 applications were not using the compromised key for

token validation and therefore were not affected.

Applications supporting Personal Microsoft accounts only

Any Azure Active Directory application that supports “Personal Microsoft accounts only”

and works against Microsoft’s v2.0 protocol was affected. This includes managed Microsoft

applications, such as Outlook, SharePoint, OneDrive, and Teams, as well as customers’

applications that support Microsoft Account authentication, including those who allow the

“Login with Microsoft” functionality.

Applications supporting accounts in any organizational directory (Any Azure

AD directory – Multi-tenant) and personal Microsoft accounts (e.g. Skype,

Xbox)

Any Azure Active Directory application that supported “mixed audience” and works against

Microsoft’s v2.0 protocol was affected as well. The threat actor could forge valid access

tokens and impersonate application users who signed in with their Personal Microsoft

account.

To restrict the power of MSA keys in impersonating organizational accounts, Microsoft

introduced an extension to the OpenID protocol. This extension advises developers to

validate the issuer claim by comparing it with the issuer �eld in the list of the OpenID public

keys. By doing this, it aims to prevent an MSA key from signing access tokens with an issuer

different than the MSA tenant (9188040d-6c67-4c5b-b112-36a304b66dad). This extension

is speci�c to Microsoft and the responsibility of its implementation rests with the

application owner. Therefore, there is a concern that many applications lack this procedure

and as a result, the threat actor could potentially impersonate organizational accounts as

well (according to Microsoft’s blogpost, OWA was affected by a similar issue).

To assist Azure developers with adopting this validation functionality, Microsoft added it to

their of�cial Azure SDK on July 12.

Applications supporting accounts in any organizational directory (Any Azure

AD directory – Multi-tenant)

IIf the multi-tenant application is con�gured to rely on the “common” v2.0 keys endpoint

(instead of “Organizations”), then it is affected but also should be considered miscon�gured.

The of�cial Microsoft documentation is not clear on when the “common” endpoint should

be used, and therefore, some multi-tenant applications could be affected as well.

Applications supporting accounts in this organizational directory only

(Singletenant)

Single tenant applications were not affected.

How different types of users may have been affected depending on the application type and whether it was
properly validating access tokens

How does key forging work?

OpenID keys are fundamentally JWTs signed by an authorized private key. As part of the

Azure Active Directory token validation procedure, the app developer must con�rm that the

key is indeed signed by the relevant authority for the intended scope, and that the token's a

ud �eld matches the targeted application’s scope.

To con�rm whether the token was truly signed by a trusted Azure authority, the application

developer queries a metadata endpoint (named jwks_uri) to pull the permitted

certi�cates for signature veri�cation and verify the token against it.

To forge a valid access token, the threat actor could have crafted a JWT token, populated it

with a victim’s data (e.g. email address), and �nally signed it with the trusted compromised

key that is listed under the Azure Active Directory public certi�cates’ endpoint. By

submitting the signed token to a targeted application, the malicious actor could have then

impersonated the victim.

Here is a �ctitious example of such a forged OpenID token signed by the compromised

encryption key, 1LTMzakihiRla_8z2BEJVXeWMqo :

According to Microsoft's guidelines, in order for the token to be considered valid, the issuer

claim (iss) must be set to https: //sts.windows.net/9188040d-6c67-4c5b-b112-

36a304b66dad/v2.0 since it was speci�ed in the issuer �eld within the jwks_uri endpoint.

As for the tenant ID claim (tid), it must accordingly be set to 9188040d-6c67-4c5b-b112-36

a304b66dad , the MSA tenant’s ID.

For AAD mixed-audience applications (multi-tenant and personal-account), any token

signed by the MSA tenant for an Azure AD account could be deemed valid, as long as it

impersonates a personal account.

For additional details, check out Microsoft's of�cial guidelines on how to verify ID Tokens.

Are Azure customers still at risk?

Due to Microsoft's revocation of the compromised key, Azure Active Directory applications

will no longer accept forged tokens as valid tokens. Tokens with extended expiration dates

will also be rejected by these applications.

However, during previously established sessions with customer applications prior to the

revocation, the malicious actor could have leveraged its access to establish persistence.

This could have occurred by leveraging the obtained application permissions to issue

application-speci�c access keys or setting up application-speci�c backdoors. A notable

example of this is how, prior to Microsoft’s mitigation, Storm-0558 issued valid Exchange

Online access tokens by forging access tokens for Outlook Web Access (OWA).

There is another potential risk to applications that retained copies of the AAD public keys

prior to Microsoft's certi�cate revocation. Applications that rely on local certi�cate stores or

cached keys and still trust the compromised key remain susceptible to token forgery. It is

imperative for these applications to immediately refresh the list of trusted certi�cates.

Microsoft advises refreshing the cache of local stores and certi�cates at least once a day.

Recommendations for Azure users

To identify whether a compromised key was used in your environment, identify all

potentially affected applications in your environment, search for forged tokens usage (as

explained in the next section) and leverage the Indicators of Compromise (IoCs) published

by Microsoft on their blog to look for any activity that originates from the IP addresses

provided by Microsoft.

In addition, make sure that none of the applications use a cached version of the Microsoft

OpenID public certi�cates, and if so, refresh the cache.

Microsoft has added additional veri�cations to the of�cial Azure SDK, which are designed to

prevent the use of MSA keys to authenticate to organization accounts. Users of the package

are advised to update it to the latest version.

How to detect the compromised key in your environment

Since the threat actor can forge access tokens of�ine, there is no trail in the Azure portal for

token issuance. The only way for cloud customers to identify whether the key was used to

target their apps or users is by reviewing application-speci�c logs for potentially affected

AAD apps. Therefore, application owners who want to protect their systems will have to

check whether a forged token has been used against their applications.

To the best of our knowledge, the only affected applications were those that utilized

Microsoft v2.0 access token veri�cation using the endpoints

”https://login.microsoftonline.com/common/discovery/v2.0/keyscommon“ and

“https://login.microsoftonline.com/consumers/discovery/v2.0/keys“. These parameters

make it feasible to �lter out applications that were not exposed to this issue.

First, to identify which AAD applications in your environment might be affected, you can run

the following Azure CLI command:

Additionally, your AAD applications might also be associated with Azure WebApps. To

identify which AAD apps are redirecting to any of your WebApps, you can run the following

CLI command:

Next, to identify potentially malicious activities in applications, it is necessary to examine

suspicious authentication attempts via OpenID tokens signed by the compromised key. This

can be done by unpacking the access tokens used against the application and searching for

the string 1LTMzakihiRla_8z2BEJVXeWMqo within the kid �eld of the JOSE Header.

According to Microsoft, the compromised key was inactive and therefore any access token

signed by this key must be considered suspicious.

Unfortunately, there is a lack of standardized practices when it comes to application-

speci�c logging. Therefore, in most cases, application owners do not have detailed logs

containing the raw access token or its signing key. As a result, identifying and investigating

such events can prove exceedingly challenging for app owners.

az ad app list --filter "(signinaudience eq 'AzureADMultipleOrgs' or signinaudience eq
'AzureADandPersonalMicrosoftAccount' or signinaudience eq 'PersonalMicrosoftAccount')"
--query "[?id].{AppName:displayName, AppID:appId, ObjID:id, HomePageURL:web.homePageUr
l}"

az ad app list --filter "(signinaudience eq 'AzureADMultipleOrgs' or signinaudience eq
'AzureADandPersonalMicrosoftAccount' or signinaudience eq 'PersonalMicrosoftAccount')"
--query "[?web && web.homePageUrl && contains(web.homePageUrl, 'azurewebsites.net')].
{AppName:displayName, AppID:appId, ObjID:id, HomePageURL:web.homePageUrl}"

When examining an AAD application con�gured solely for multi-tenant authentication

(without support for Microsoft personal accounts), it is possible to detect forged tokens by

�ltering for `iss` and `tid` claims within the access token. Applications commonly use these

�elds and they are more likely to be present in application logs. Moreover, any attempt to

connect with an access token signed by the MSA tenant ID 9188040d-6c67-4c5b-b112-36a3

04b66dad may indicate the use of a compromised key.

Finally, if you’ve enabled HTTP Logs in your WebApp, you might be able to see which IP

addresses have accessed your application. Based on Microsoft’s blogpost, the following IP

addresses are associated with the threat actor, so you should validate if your WebApp might

have been impacted by running the following query in Log Analytics for each of your

potentially affected Web Apps:

For additional guidance on searching for signs of persistence in your environment, see our

“CircleCI Incident Sign of Persistence” blog.

Key Takeaways

The full impact of this incident is much larger than we Initially understood it to be. We

believe this event will have long lasting implications on our trust of the cloud and the core

components that support it, above all, the identity layer which is the basic fabric of

everything we do in cloud. We must learn from it and improve.

At this stage, it is hard to determine the full extent of the incident as there were millions of

applications that were potentially vulnerable, both Microsoft apps and customer apps, and

the majority of them lack the suf�cient logs to determine if they were compromised or not.

However there are some critical actions items that application owners should perform. The

�rst and foremost is to update their Azure SDK to the latest version and ensure their

AppServiceHTTPLogs
| where Result == "Success"
 and CIp in ("195.26.87.219","185.236.228.183","85.239.63.160","193.105.134.58",
 "146.0.74.16","91.231.186.226","91.222.174.41","185.38.142.249",
 "51.89.156.153","176.31.90.129","137.74.181.100","193.36.119.45",
 "185.158.248.159","131.153.78.188","37.143.130.146","146.70.157.45",
 "185.195.200.39","185.38.142.229","146.70.121.44","31.42.177.181",
 "185.51.134.52","173.44.226.70","45.14.227.233","185.236.231.109",
 "178.73.220.149","45.14.227.212","91.222.173.225","146.70.35.168",
 "146.70.157.213","31.42.177.201","5.252.176.8","80.85.158.215",
 "193.149.129.88","5.252.178.68","116.202.251.8")

application cache is updated, otherwise their apps may still be vulnerable to a threat actor

using the compromised key.

We will continue to closely monitor this incident and provide updates; this is still an ongoing

investigation and there are many unanswered questions (how did the threat actor acquire

the key? When exactly did it happen? Were other keys compromised as well?). Finally, we

want to thank the Microsoft team for working closely with us on this blog and helping us

ensure it is technically accurate.

See for yourself...

Learn what makes Wiz the platform to enable your cloud security operation

Watch a recorded demo

Or schedule a live demo with us

References

https://msrc.microsoft.com/blog/2023/07/microsoft-mitigates-china-based-

threat-actor-storm-0558-targeting-of-customer-email/

https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-193a

https://blogs.microsoft.com/on-the-issues/2023/07/11/mitigation-china-based-

threat-actor/

https://www.microsoft.com/en-us/security/blog/2023/07/14/analysis-of-storm-

0558-techniques-for-unauthorized-email-access/

https://github.com/AzureAD/azure-activedirectory-identitymodel-extensions-for-

dotnet/pull/2136/�les

https://github.com/MicrosoftDocs/azure-

docs/commit/f17445bb9202a89964ea7311c4374806adfcb28c

Tags: #Research #News

